Threeconnected graphs with only one Hamiltonian circuit ${ }^{1}$

E. Grinbergs

We will call graph 1-H-graph, if it is threeconnected and it has only one Hamiltonian circuit (H circuit). We will say, that in the graph G three distinct vertices x, y, z in the given order comprise special triplet - shorter, s-triplet $\{x, y, z\}$, if

1) there is only one Hamiltonian chain (H-chain) $[x \ldots y]$ with end vertices x, y;
2) there is not H-chain [x...z];
3) there either
3.1) G is threeconnected; or
3.2) G is not threeconnected, but it becomes threeconnected if vertex t and edges $t x, t y, t z$ are added.
H-chains [y...z] can be of arbitrary number or be not at all.
Graph G satisfying these conditions will be called preparation.
If graphs G and G^{\prime} without common elements have correspondingly s-triplets $\{x, y, z\}$ and $\left\{x^{\prime}, y^{\prime}\right.$, $\left.z^{\prime}\right\}$, then the linking of the graphs G and G^{\prime} through these triplets will be called graph $G^{\prime \prime}$, that is built from graphs G and G^{\prime}, that are joined with edges $x y^{\prime}, y x^{\prime}, z z^{\prime}$.
$G^{\prime \prime}$ is 1-H-graph. Because of condition $3 G^{\prime \prime}$ is threeconnected. The only H-circuit of $G^{\prime \prime}$ is composed from [x...y], $y x^{\prime},\left[x^{\prime} . . . y^{\prime}\right], y^{\prime} x$.

Indeed, each H-circuit of $G^{\prime \prime}$ has just two edges from $x y^{\prime}, y x^{\prime}, z z$ '. Because of the condition 1 first two edges go only into indicated H-circuit. Because of the fact that there are not H-chains [x...z] in G and $\left[x^{\prime} \ldots z^{\prime}\right]$ in G^{\prime}, pairs of edges $x y^{\prime}, z z^{\prime}$ and $y x^{\prime}, z z^{\prime}$ do not go in any H-circuit of $G^{\prime \prime}$.

[^0]If G is graph with only one H-circuit we will say that the edges of the H-circuit are strong, but other edges are weak. For each vertex x of G with degree $p \geq 3$ there are at least $2(p-2)$ triplets x, y, z, that satisfy condition 1 and 2 (Fig. 1, where strong edges are bold).

Fig. 1
y and z are taken correspondingly the end vertices of strong and weak edges $x y$ and $x z$.
If preparation G have vertices of degree 2 then because of the condition 3.2 they all must go into s-triplet. But, if G is $1-\mathrm{H}$-graph, the condition 3 is satisfied and each triplet of the type of fig. 1 is s-triplet; but there can be other s-triplets too. Two such graphs can be linked together in different ways and thus giving new $1-\mathrm{H}$-graphs.
Thus, it is possible to build $1-\mathrm{H}$-graphs with arbitrary large number of vertices.
Simplest graphs that we succeeded to find was some modifications of Petersen's graphs: G_{0} with $n=9, G_{1}$ with $n=11$ and G_{2}, G_{3} with $n=12$.* [The matrixes below which in (i, j) shows the number of H-chains between vertices i and j are computer data and added by us and in Grinbergs manuscripts naturally were absent. These matrixes allow easy to see that Grinberg characterized all s-triples in considered preparationes.]

1	2	3	4	5	6	7	8	9	0	x	y
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	2	0	0	0	1	0	2
0	0	0	0	1	3	3	0	1	2	1	5
0	1	0	0	0	0	3	2	1	2	5	1
0	0	1	0	0	2	1	0	0	0	2	0
0	2	3	3	2	0	3	0	0	3	2	2
0	0	2	2	1	3	0	1	0	0	1	5
0	0	0	1	0	0	1	0	0	0	4	4
0	0	1	0	0	0	0	0	0	1	4	4
0	1	2	2	0	3	0	0	1	0	5	1
0	0	1	5	2	2	1	4	4	5	0	0
0	2	5	1	0	2	5	4	4	1	0	0

Graph $\mathrm{G}_{2}, \mathrm{n}=12$
Fig. 2

Here (in fig. 2) is s-triple $\{x, 3, z\}$ (which with automorphisms of G_{2} transforms into equivalent striples $\{x, 7, z\},\{z, 4, x\},\{z, 0, x\}$). Indeed, there are not H-chains [x...z] in other case there were H-circuits in the Petersen's graph. If we add edge $x 3$, we get graph isomorphic to G_{3} (in Fig. 3). In Fig. 3 there is drawn the only H-circuit of the graph G_{3}, which has in corresponds the only H chain of G_{2}, namely, [x...3].

1	2	3	4	5	6	7	8	9	0	x	y
0	0	1	2	0	0	1	1	1	2	1	1
0	0	1	5	2	6	1	3	1	2	0	7
1	1	0	0	1	3	2	0	2	3	1	6
2	5	0	0	1	5	4	3	1	5	5	4
0	2	1	1	0	2	1	1	1	0	2	1
0	6	3	5	2	0	3	1	1	4	2	3
1	1	2	4	1	3	0	2	0	1	1	6
1	3	0	3	1	1	2	0	2	1	4	8
1	1	2	1	1	1	0	2	0	3	5	6
2	2	3	5	0	4	1	1	3	0	6	3
1	0	1	5	2	2	1	4	5	6	0	1
1	7	6	4	1	3	6	8	6	3	1	0

Fig. 3

In the graph G_{3} because of the condition 3.2 vertex y goes into each s-triple. From y goes out H chain with ends in each other vertex of G_{3} but only in vertices 1,5 or x exactly one each case. Thus, one of these vertices can be first vertex of s-triple, but y must be the second in any case. Such are both trivial s-triples $\{1, y, 6\}$ and $\{5, y, 0\}$. It can be established that there are two more s-triples $\{1, y, 2\}$ and $\{x, y, 2\}$ - making four s-triples together. Triples $\{1, y, 5\}$ and $\{5, y, 1\}$ are not s-triples because of condition 3.2. Because G_{3} has only identical automorphism these s-triples are essentially different.

More simple preparation (G_{1}, fig. 4) with s-triple $\{1,4, z\}$. Equivalent with vertex 4 are 8,9 and 0 , because automorphisms with (1)(2)(z) are two: (37)(40)(5)(6)(89) and (3)(7)(56)(48)(90).

1	2	3	4	5	6	7	8	9	0	z
0	0	2	1	0	0	2	1	1	1	0
0	0	0	1	2	2	0	1	1	1	0
2	0	0	0	4	4	4	0	3	3	2
1	1	0	0	0	3	3	2	0	2	6
0	2	4	0	0	4	4	3	3	0	2
0	2	4	3	4	4	0	4	0	3	2
2	0	4	3	4	4	0	3	0	0	2
1	1	0	2	3	0	3	0	2	0	6
1	1	3	0	3	0	0	2	0	2	6
1	1	3	2	0	3	0	0	2	0	6
0	0	2	6	2	2	2	6	6	6	0

Graph $\mathrm{G}_{1}, \mathrm{n}=11$
Fig. 4

Preparation with $n=9$ is G_{0} (fig. 5) with s-triple $\{1,9,5\}$. Thus we get 1 - H-graph with 18 vertices (fig. 6).

1	2	3	4	5	6	7	8	9
0	1	3	1	0	1	2	1	1
1	0	1	0	1	1	0	0	3
3	1	0	2	2	0	1	1	3
1	0	2	0	3	0	0	1	1
0	1	2	3	0	3	1	1	3
1	1	0	0	3	0	2	0	2
2	0	1	0	1	2	0	2	1
1	0	1	1	1	0	2	0	3
1	3	3	1	3	2	1	3	0

Graph $\mathrm{G}_{0}, \mathrm{n}=9$
Fig. 5

Fig. 6

Thus we get threeconnected $1-\mathrm{H}$-graph with $n=18$ vertices. Vertices $1,2,0, \widetilde{1}$ are with degree four, other of degree three. It seams that at least four edge crossings. The only non-trivial automorphism is symmetry $(10)(2 \tilde{1})(3 \widetilde{2})(4 \widetilde{3})(5 \widetilde{4})(6 \widetilde{5})(7 \widetilde{6})(8 \quad \widetilde{7})\left(9{ }_{8}\right)$.

[^0]: ${ }^{1}$ This article is compiled from several fragments from Grinbergs manuscripts by D. Zeps

