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Abstract. We describe a hybrid system based framework for modeling
gene regulation and other biomolecular networks and a method for anal-
ysis of the dynamic behavior of such models. A particular feature of the
proposed framework is the focus on qualitative experimentally testable
properties of the system. With this goal in mind we introduce the notion
of the frame of a hybrid system, which allows for the discretisation of
the state space of the network. We propose two different methods for the
analysis of this state space. The result of the analysis is a set of attractors
that characterize the underlying biological system.
Whilst in the general case the problem of finding attractors in the state
space is algorithmically undecidable, we demonstrate that our methods
work for comparatively complex gene regulatory network model of λ-
phage. For this model we are able to identify attractors corresponding to
two known biological behaviors of λ-phage: lysis and lysogeny and also
to show that there are no other stable behavior regions for this model.

Introduction

Hybrid systems (HS) are a natural choice for modeling biomolecular networks for
at least two reasons: 1) they can model processes that are relevant to behavior
of biomolecular networks – they can describe both discrete aspects (e.g. states
of activity of specific promoters) and continuous aspects (e.g. concentrations
of biological substances in a cell); 2) well established mathematical techniques
and supporting software tools exist for analysis of such hybrid system models.
One of the first explicit applications of a HS based approach to the modeling
of biomolecular networks has been described by Alur et al in [2], where the
authors discuss a rather general class of HS models and show that such models
are adequate for description and simulation of biological networks.
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There is a significant number of other studies discussing applications of HS
to biomolecular network modeling, often proposing somewhat more restricted
formalisms than the one used in [2] and providing examples of applications of
these models to description of specific biological systems (see for example [7],
[9], [4], [15] and [1], which is by no means a comprehensive list). One of the most
recent of such studies [8] describes an HS based Temporal Evolution Model
and applies it to modeling of Drosophila circadian cycle. Multiaffine Hybrid
Automata models ([10], [3]) that correspondingly have been applied to cardiac
cell and bone cell modeling technically are similar to our approach, however the
emphasis is on the simulation and identification of parameter values.

Whilst not stated in terms of HS explicitly, a related approach has been
presented in [16, 17]. These models describe a biological system using differential
equations and then analyze stability of specific cyclic behaviors (’circuits’) at a
logical level. Notably, by using this approach the stability of several regulatory
circuits for λ-phage has been shown ([17]).

Our work presented here is generally in line with previous studies of appli-
cation of hybrid systems to biomolecular network modeling and is motivated by
two observations. First, it can be experimentally difficult to measure the quanti-
tative parameters of biological systems accurately and experimental results often
are closer to a qualitative assay than a quantitative measurement (e.g., it may
be possible to detect if the concentration of a particular substance is increasing
or decreasing, while measuring the exact rate is much more difficult). Second, in
some cases it is possible to separate the structure of the underlying regulatory
network from its quantitative parameters. In this case it is natural to ask to
what extent the qualitative behavior of the system depends on the structure of
the network alone, and to what extent on the exact quantitative values (relative
or absolute) of the parameters.

Driven by these assumptions we propose a Hybrid System Model (HSM)
tailored to the description of biomolecular networks and gene regulatory net-
works in particular. HSM can be viewed as a restricted version of hybrid system
that still provides sufficient power for modeling of biological systems, while the
restrictions imposed upon HSM facilitate the analysis of the models. HSM is
a generalization of the authors’ previous work on Finite State Linear Model
(FSLM) ([5, 12, 13]).

A variation of HSM model and its application to the analysis of behavior of
gene network of λ-phage ([11]) has been previously described by the authors in
[6]. Here we present a more developed mathematical formalism for separation be-
tween quantitative and qualitative parameters of the system: 1) we assume that
a biological system is correctly represented by a HSM, however the parameter
values are unknown; 2) known however is a structure (modes and transitions be-
tween them) of HSM represented by its frame; 3) the analysis of HSM behavior
is done at the level of constrained frames in which the exact parameter values
are replaced by discrete constraints on them.

We also present a new algorithm for analysis of the universal state space of the
constrained frames of HSM. This allows us to derive the constraints that affect
the behavior of the system in single process of universal state space analysis,



avoiding exhaustive analysis of state spaces for all the possible sets of constraints
that has been done previously. The mathematical formalism is presented here
also in mathematically more rigorous terms than in the previous work.

For the assessment of the merits of the modeling and analysis methods de-
scribed here, we have applied the model to a well-studied gene network of λ-phage
[11]. λ-phage is a bacterial virus, which when invading its host can exhibit two
different stable behaviors lysis and lysogeny.

It should be noted that due to the undecidability of the reachability problem
for HSM we can not guarantee that HSM state space analysis will provide any
results. Therefore it is noteworthy that for a comparatively complicated gene reg-
ulatory network model of λ-phage our method was able to identify two regions
of stable behavior in the model’s state space that correspond to the two biologi-
cally known behaviors – lysis and lysogeny. Moreover, these are the only regions
of stable behavior and their existence does not depend on the exact quantitative
parameters, but only on the structure of the network and the experimentally
known qualitative information.

Hybrid systems for modeling gene regulatory networks

Like in most previous approaches that use HS for modeling gene regulatory net-
works (GRN), we use modes to represent different combinations of transcription
factor binding site states (a binding site may be either vacant or in an occupied
state) and continuous variables for representing the concentrations of various
biological substances (e.g. proteins) in a cell. We assume that in each mode sub-
stance concentrations change according to continuous functions from a given set
of possible functions. The change of mode is defined by a condition in transition
diagram; mode is changed when a concentration of a substance reaches a certain
threshold, i.e. one of the predicates ’guarding’ a transition from the given mode
is satisfied. In gene regulatory networks these thresholds correspond to associa-
tion or dissociation concentrations of proteins that have to be reached in order
to bind or dissociate from a particular binding site.

We keep our HSM formalism as simple as possible, but still sufficient for
modelling biological processes. Most notably we disallow instantaneous resetting
of continuous values to 0, since such resetting does not seem to have any valid
biological interpretation.

Definition 1. A Hybrid System Model (HSM) is a 6-tuple H = 〈M,X,C, T, F,MF 〉,
where:

1. M = {µ1, . . . , µk} is a finite set of modes.
2. X = {x1, . . . , xm} is a finite set of continuous variables that can assume real

non-negative values.
3. C = {c1, . . . , cr} is a finite set of real non-negative transition constants.
4. T is a set of mode transitions, where each transition τ ∈ T has the form τ =

α →p β, where α, β ∈ M and p = p(τ) is a predicate that has a form x ≤ c
or x ≥ c for some variable x = x(τ) ∈ X and some constant c = c(τ) ∈ C.
Predicate p, called a guard, is a function p : R+ → {true, false} the value
of which depends on the value of variable x.



5. F = {f1, . . . , fn} is a set of real non-negative two argument growth/degradation
functions fi : R+ ×R+ → R+ that are continuous and monotonous in both
arguments and for which fi(z, 0) = z for every z ∈ R+.

6. MF : M × X → F is a mapping providing mode-function assignments
assigning to each mode α ∈M and each variable x ∈ X a function g ∈ F .

A ’toy example’ of hybrid system model of a GRN with two genes and three
protein binding sites is shown in Figure 1.

Fig. 1. A ’toy example’ of GRN with two genes and three protein binding sites (a),
and the corresponding HSM with 8 modes (b). Each binding site b becomes occupied if
the concentration of gene product binding to it reaches an association constant ab and
becomes vacant if the concentration drops to dissociation constant db (where ab > db).
HSM modes are denoted by binding site states (e.g. 100 represents the situation when
site b1 is occupied and b2 and b3 are vacant); no concrete growth functions are shown,
but functions are increasing if the value of a Boolean function from the states of binding
sites is true and decreasing if false. Transitions triggered by changes of variable x are
shown with dashed and transitions triggered by changes of variable y with solid lines,
constants in transition guards are not shown.

Intuitively a mode-function assignment assigns to each mode α ∈ M and
each variable x ∈ X a growth/degradation function that describes the change
of this variable in time. Whilst these functions could be viewed as a part of
the corresponding modes, if we are concentrating on qualitative aspects of such
functions (e.g. are they increasing or decreasing) and not on their precise form,
it may be useful to distinguish between pairs of modes with identical functional
assignments for a given variable and pairs of modes with different ones.

Each growth/degradation function f has two real valued arguments. The first
of them corresponds to the value of a variable x at the time of switching to a
particular mode for which f is assigned to be the function regulating x, while
the second is the time ∆t elapsed since the switch. For instance, in a special case
when the growth rates are constant, the functions are linear and have a form
g(x,∆t) = x + c ·∆t, where c is a constant. For these particular functions the
condition g(z, 0) = z is also satisfied. This condition ensures the continuity of
trajectories when the system switches from one mode to another.



In comparison with more general definitions of hybrid systems we have placed
several restrictions on the set of functions according to which the substance con-
centrations can change. One such restriction is that only the mode of the system
and the value of a particular substance determines the rate of concentration
change until a switch to a different mode happens. In addition in a given mode
the concentration of a particular substance can only increase, decrease or stay
constant. In practice we also need to impose a few additional restrictions (mostly
too technical to merit inclusion in HSM definition) to exclude some ’undesirable
behaviors’ of the system. Most notably we require that if concentration of some
substance is moving towards a transition constant triggering a guard then even-
tually this constant will be reached. The formalism is strong enough to describe
biological systems, but does not provide more freedom for the behavior of the
system than is necessary.

To describe the behavior of a HSM starting at a given initial mode with a
given set of initial variable values we use a concept of run. A run describes an
evolution of HSM over time by specifying a concrete sequence of modes through
which the system is evolving and assigning well-defined values x(t) to each of
the variables x ∈ X at time moments t.

Let H = 〈M,X,C, T, F,MF 〉 be a HSM with given initial mode α0, initial
time moment t0 and initial values of variables X(t0) = (x1(t0), . . . , xm(t0)). We
define a run of the system H as a (finite or infinite) sequence of modes αi ∈M
and times ti: R(α0, t0, X(t0)) = (α0, t0)→ (α1, t1)→ (α2, t2)→ · · · .

For each (αi, ti) ti is the time point when H switches to the mode αi. While
the system is in the mode αi its variables change as defined by the mode function
assignment in that mode (i.e. for all j: xj(t) = gj(xj(ti), t − ti), where gj =
MF (αi, xj) – a function assigned to xj in mode αi). Such an evolution continues
until one of the guards is satisfied (if several are satisfied simultaneously, we can
assume that one is selected by some deterministic procedure).

A particular run R(α0, t0, X(t0)) assigns well-defined functions describing
changes of the variables in time. For each xj ∈ X and t ∈ [ti, ti+1] it defines
xj(t) = gj(xj(ti), t−ti) and thus also defines a vector function X = (x1, . . . , xm)
in the whole interval [t0,∞[.

Thus a specific run of H describes a precise and (in principle) experimentally
measurable behavior of the system, and given an appropriate HSM for some
biological system, a run can be regarded as simulation of the behavior of this
system starting from some known initial conditions. Still, if we want to describe
all the possible behaviors of the system in such a way, we (normally) need a
continuum of different runs.

A natural and well explored alternative is to disregard the exact values of
function X describing changes of variables, but consider only sequences of modes
α0, α1, . . . that can occur in runs. Provided that modes of HSM have well de-
fined biological interpretation, modes can also be more easily determined in
experiments than exact concentrations of substances. Still, even experimental
measurement of modes may not be a simple task.



We define a path of HSM in order to describe a finite sequence of modes that
can occur in a particular run: a finite sequence α0, . . . , αn is called a path if there
is a run R(α0, t0, X(t0)) = (α0, t0)→ · · · → (αn, tn)→ · · · .

Qualitative behavior of networks and frames of HSM

An appropriate HSMH can provide a good approximation of a biological system.
However such a model also involves a large number of quantitative parameters:
the set of growth/degradation functions and the set of the guards governing
transitions, the knowledge of which is only rarely a realistic assumption.

Nevertheless usually we can assume that a set of modes M is known – a
separate mode can be assigned to each state of gene activity (active or not)
and/or binding site state (occupied or not). In addition it is often possible to
define the set of variables X (e.g. the set of substances in whose concentrations
we are interested), and gather the information about the transitions in T (the
modes and variables involved) and a partial information about the growth and
degradation functions (e.g. whether a particular concentration is growing or
decreasing). Guards in our model have a very simple form: either x ≤ c or x ≥ c.
Often we know the type of the inequality, but not the exact constant c.

To specify a HSM using such a limited information (more of qualitative than
quantitative nature) about the system we introduce the notion of frame. A single
frame is intended to represent a whole set of HSMs that are consistent with the
existing knowledge about the system.

A frame of HSM is defined as a 5-tuple F = 〈M,X,C ′, T,MF ′〉, where the
requirements on M,X, T are the same as in the definition of HSM, but we don’t
have a set of concrete functions F and use an assignment MF ′ : M ×X → {↗
,↘,→} instead?. In addition for frames a set C ′ is not a set of constants, but
instead is a set of variables assuming real non-negative values. For two different
transitions τ1 and τ2 the notation c(τ1) = c(τ2) indicates that the ’constants’
involved in the guards of these transitions are the same, otherwise it is assumed
that these ’constants’ are distinct. Normally we will use c(τ1) = c(τ2) only for
transitions with x(τ1) = x(τ2).

Thus essentially a frame is a simplified HSM, for which only qualitative in-
formation about the growth/degradation functions and the guards is specified.

For a given HSM H we can easily construct the frame by using the same
sets of modes M , variables X and transitions T and simply replacing C and
MF with C ′ and MF ′ providing less restricted information about the transition
guards and growth functions. We call such a frame an induced frame of H and
denote it by F(H).

The concept of run can be extended to frames. Since for frames we lack
information about substance concentrations, their change rates and their relation
to transition guards, for frames each run is specified only by an initial mode α0

? For biomolecular networks the value ′′ →′′ describing the situation where concentra-
tion of some substance does not change is generally reserved for the cases in which
concentration is either 0 or the maximal biologically feasible saturation value.



and is just a sequence of modesR(α0) = α0 → α1 → α2 → · · · , where αi → αi+1

is allowed if and only if there is a transition τ = αi →p αi+1 ∈ T .
Runs for frames are generally non-deterministic, i.e. not uniquely specified by

initial α0. Usually runs will be infinite sequences of modes, unless they terminate
with some mode β that does not have outgoing transitions. Consistently with
the terminology used for HSM a finite sequence α0, . . . , αn is called a path if
there is a run R(α0) containing this sequence as an initial fragment.

In general frame F = F(H) will have a multitude of paths α, . . . , β in F for
which there are no corresponding paths (i.e. with identical mode sequences) in

H. Moreover, for some paths α, . . . , β in F there may not exist any HSM Ĥ with
F = F(Ĥ) in which α, . . . , β is a path (the reason is that for frames we do not
have the means of enforcing a consistent behavior of growth/degradation func-
tions each time a particular mode is encountered in the run). Thus in general
frame runs may describe behaviors that are not consistent with the qualitative in-
formation about the growth/degradation functions of the system included in the
specification of its frame. However, it is evident that for each runR(α0, t0, X(t0))
of H there always will be a run R(α0) of F(H) with the same sequence of modes
(the same will hold also for paths). Therefore, we do not lose any of systems’
behaviors when considering frames instead of HSM.

Whilst for a given HSM H its behavior can be represented by its induced
frame, for analysis purposes it may be useful to characterize H with other frames
that have more fine grained structure. To do this we introduce the notion of frame
refinement.

Definition 2. A frame F1 = 〈M1, X,C
′, T1,MF ′

1〉 is a refinement of frame
F2 = 〈M2, X,C

′, T2,MF ′
2〉 (denoted F1 < F2), if there are surjective mappings

m : M1 →M2 and t : T1 → T2 such that:

1. for all α→p β ∈ T1: t(α→p β) = m(α)→p m(β) ∈ T2;
2. for all α ∈M1 and all x ∈ X1: MF ′

1(α, x) = MF ′
2(m(α), x);

3. the sequence m(α0), . . . ,m(αn) is a path in frame F2 for any path α0, . . . , αn
in frame F1.

Thus we allow partitioning of modes and removal of some transitions from
partitioned modes in a frame refinement as long as all the paths of the original
frame are preserved. Therefore by the definition of a refinement all the ’behaviors’
of the initial frame will also be exhibited by its refinement.

In a similar manner we say that a frame F supports HSM H (denoted by
F CH), if for all paths in H there are corresponding paths in supporting frame
F . It is evident that frame refinement is transitive and that any HSM H will
always be supported by the induced frame F(H).

In HSM models of biological networks guards of transitions x ≥ c (x ≤ c)
can correspond to an event when the concentration of a protein described by
a variable x reaches an association constant of some site and binds to it (or
drops below a dissociation constant and vacates the site). The exact values of
binding site affinities usually are unknown, however in cases where there are
several binding sites for the same protein at least a partial ordering of binding
affinities may be known. To characterize such affinity orderings we use the notion



of constraints. For a given frame F = 〈M,X,C ′, T,MF ′〉 we define a constraint
O(C ′) as a transitive directed acyclic graph with a set of vertices C ′. A constraint
effectively specifies a strict (i.e. non-reflexive) partial ordering of values in C ′:
for c1, c2 ∈ C ′ an edge (c1, c2) in constraint O(C ′) is interpreted as inequality
c1 < c2. Normally graphs O(C ′) will consist of a number of non-connected
components, a separate one for each variable in X. We denote by Cons(F) the
set of all constraints of frame (i.e. set of all partial orderings of C ′). By O∅(C ′)
we denote constraint with no edges.

Given two constraints O1(C ′) and O2(C ′) with the same set of vertices C ′

and sets of edges E(O1) and E(O2) the union O1 ∪ O2 denotes a graph with
the vertex set C ′ and the set of edges a transitive closure of E(O1) ∪ E(O2).
If O1 ∪ O2 contains a cycle, it is not a constraint and we say that constraints
O1 and O2 are incompatible. Otherwise we say that O1 and O2 are consistent.
Similarly the intersection of constraints O1 ∩O2 denotes a graph with the set of
edges E(O1) ∩ E(O2). O1 ∩O2 is always a constraint.

Definition 3. A constrained frame is a pair (F , CA), where F = 〈M,X,C ′, T,MF ′〉
is a frame and CA : T → Cons(F).

We say that two constraint assignments CA1 and CA2 are incompatible if for
some transition τ constraints CA1(τ) and CA2(τ) are incompatible. Otherwise
we say that CA1 and CA2 are consistent. For consistent CA1 and CA2 it is
convenient to denote by CA1 ∪ CA2 the assignment of constraint CA1(τ) ∪
CA2(τ) to each transition τ . We can define CA1 ∩ CA2 analogously. By CAO
we denote the assignment of the same constraint O to all transitions.

In constrained frame each transition is annotated with a partial ordering of
C ′ and we consider transition as ’available’ only if its transition constant has
the highest priority among all the transitions from the same mode and involving
the same variable. Moreover we require that in constrained frames a sequence of
modes forming a run should be ’passable’ by a sequence of transitions that does
not include any transition pairs with incompatible constraint assignments.

To make this more precise we define constraint O(α, β) as an intersection
of all constraints CA(τ) for transitions τ = α →p β ∈ T for a particular pair
of modes α, β in constrained frame (F , CA). Furthermore, for each sequence of
modes P = α0, . . . , αn we define a graph O(P ) as a union of all constraints
O(αi, αi+1), i = 0 . . . n− 1. Informally, if O(P ) is a constraint (i.e. without
cycles) it can be regarded as the least restrictive single constraint under which
the sequence of modes P is ’passable’.

For constrained frames it is convenient to start with a definition of path
instead of run – a finite sequence P = α0, . . . , αn is a path if O(P ) is a constraint.
Then R(α0) = α0 → α1 → α2 → · · · is a run if each initial fragment of sequence
of its modes α0, . . . , αn is a path. For finite runs R(α0) = α0 → · · · → αn we

also require that R(α0) is not a proper prefix of some other run R̂(α0).
The notion of frame refinement can be extended to constrained frames. The

definition of a constrained frame (F1, CA1) being a refinement of (F2, CA2) (de-
noted by (F1, CA1) < (F2, CA2)) is analogous to Definition 2 with an additional
requirement that a mapping t of transitions should be consistent with the con-



straint assignments (i.e. CA1(t(τ)) = CA2(τ)) and the requirement for path
conservation now referring to paths in constrained frames.

Let us consider HSM H describing some gene regulatory network. The com-
plete ordering of affinities C of binding sites in H is represented by some con-
straint O and it would be adequate to describe this GRN with induced frame
F(H) and constraint assignment CAO. We call such constraint assignment CAO
maximal and for given H denote it by Max(H). The induced constrained frame
will be denoted by (F(H),Max(H)). This notation allows to extend definition
of frame support for HSM to constrained frames: constrained frame (F , CA)
supports H (denoted by (F , CA) CH) if (F , CA) < (F(H),Max(H)).

However usually we do not have complete knowledge of ordering of C. In
the worst case when we do not possess any knowledge about the orderings of
affinities we can only consider the least constrained frame that will support H
regardless of the affinity ordering in H. In such frame we assign to all transitions
in F constraints that give them the highest priority – i.e. to each transition
α →p β ∈ T with guard p of the form x(τ) ≤ c(τ) we assign a constraint with
edge set {(c(τ), c(τ̂))|τ̂ = α →p γ ∈ T, γ ∈ M, τ 6= τ̂ , x(τ) = x(τ̂)} (or edge
set {(c(τ̂), c(τ))|τ̂ = α →p γ ∈ T, γ ∈ M, τ 6= τ̂ , x(τ) = x(τ̂)} if p is of form
x(τ) ≥ c(τ)). We call the resulting constraint assignment minimal and for frame
F denote it by Min(F). In contrast to maximal assignment, which is based on
underlying HSM H, minimal assignment is defined solely by the properties of F .

Analysis of dynamic behavior of hybrid system models

Given a constrained frame (F = 〈M,X,C ′, T,MF ′〉 , CA) describing some sys-
tem, all its possible behaviors are represented by runs that are allowed under the
specified constraints. We can conveniently characterize all such runs by a graph
whose vertices correspond to modes of F and edges correspond to the transitions
in F that are allowed in runs by a constraint assignment CA. We call such graph
a state space graph of F and denote it by G = G(F , CA). The vertex set of V (G)
is simply M , the set of edges E(G) is subset of {(α, β)|α→p β ∈ T}. There is a
simple algorithm that computes G(F , CA) for given F and CA.

There are notable similarities between frame state space graphs and state
space graphs in Boolean gene network models. For Boolean models the analysis
of their space graphs is also simple and gives unambiguous characterization of
the system’s behavior – the graphs decompose into cyclic attractor subgraphs,
each of which can be regarded as a descriptor of one of the possible behaviors of
the system. The information that a frame state space graph provides about the
system’s behavior is very similar to that given by state space graphs of Boolean
models. Unfortunately, however, frame state space graphs can be much more
complex and do not allow for a simple partitioning into attractor basins.

We are interested in identifying the regions in frame state space graphs G =
G(F , CA) that will characterize ’stable behaviors’ of the system. In order to
achieve this task we propose to partition G into strongly connected components
(SCC) and to relate these components to stable behaviors (similar generalization
of attractors has been already used for Random Boolean Networks in [14]).



In the worst case the wholeG can consist just of a single SCC. However we can
perform a more detailed analysis of the dynamics than just compute a partition
of G into SCCs. Let us consider a SCC S ⊆ V (G) and a variable x, such that for
all modes α ∈ S: 1) we have MF ′(α, x) =↗ (or MF ′(α, x) =↘), and 2) there is
an edge (α, β) ∈ E(G) derived from transition τ = α→p β with the guard of the
form x ≤ c(τ) (correspondingly x ≥ c(τ)). In such a situation we can conclude
that the system can stay in S only for a limited time, since eventually one of
guards for these transitions will get satisfied (due to restrictions we impose on
growth functions). In such cases we say that SCC S is transitional.

Definition 4. A strongly connected non-transitional component of constrained
state space graph G(F , CA) is called an attractor.

Finding of attractors requires splitting state space graphs in SCCs and check-
ing whether each SCC is or is not transitional. The latter task can be achieved
in linear time with respect to the size of graph.

Suppose that we have HSM model H for some gene regulatory network. We
assume that we have only qualitative knowledge about parameters of H, i.e., we
have complete knowledge whether growth/degradation functions are increasing
or decreasing and possibly a partial knowledge about the ordering of transition
constants. Such amount of available information seems to be typical for many
biological networks. In terms of constrained frames our knowledge about the
system is represented by an induced constrained frame (F(H), CA) with a set of
constraints CA ranging somewhere between Min(F(H)) (no knowledge about
transition constants) and Max(H) (complete knowledge about transition con-
stants). Usually however some information about constant ordering is available,
e.g. if constants correspond to association and dissociation affinities of binding
sites, then for the same binding site association affinity must be the largest of
these two. Additional constraints also can be derived from the known biological
facts. We denote these known constraint assignments by External(H).

In order to make some judgments about possible H behaviors we are inter-
ested in finding the sets of all attractors of all frames (F(H), CA) for which CA
is consistent with External(H). There are two natural ways to do this.

Firstly, we could consider all complete orderings Ord ∈ Cons(F(H)) of tran-
sition constants that are consistent with External(H) and analyze attractor
structure of all the corresponding graphs G(F(H), CAOrd) (thus essentially we
check for attractor structure of graphs corresponding to all the possible choices
of Max(H)). Such an approach has been used by the authors in [6] for analysis
of λ-phage model. Despite comparatively large size of this model (11664 modes
and 32 transition constants) the number of different orderings that have to be
considered is comparatively small – only 42. The main reason for this is (easily
provable) fact that attractor structure is influenced only by orderings of subsets
of constants {c(τ)|x(τ) = x} for each variable x ∈ X. Therefore for HSM models
where transitions are defined by binding site affinities, in the special case when
for each binding factor there is only single binding site it affects, there will be
only a single ordering Ord to consider. For our λ-phage model there are multiple
binding sites for most of the binding factors and ’biologically known’ constraints



are used to reduce the number of possible orderings from a few thousands to 42.
One of the results we have presented in [6] is the fact that the attractor structure
remains the same for all these 42 orderings and contains only 2 attractors that
correspond to two known biological behaviors of λ-phage: lysis and lysogeny.

An alternative approach on which we focus in this paper is to try to analyze
directly attractor structureG(F , CA) using only known limited knowledge of CA
that is given by External(H) and Min(F(H)) without explicit consideration of
all the possible choices of CA. Such an approach has several advantages: first,
if two different assignments CA1 and CA2 have similar state space graphs we
probably can save some work by noticing shared parts in these graphs; second
this could help to decide whether the behaviors described by the attractors
yielded by different choices of CA are essentially the same or different; third such
an approach could help to derive automatically the conditions (i.e. constraint
assignments) that separate different qualitative behaviors.

Fig. 2. A simple example showing that refinement of constrained frame (b) can have
attractors with fewer number of states than in original frame (a). In original frame there
is a SCC containing states m1,m2,m3,m4, u, which have incompatible constraints for
two different paths between states u and v. In refinement this SCC has been split
in two SCCs with states m1,m2, u and m3,m4, u

′. Solid and dashed lines represent
correspondingly transitions and paths, in the latter case the constraints shown refer to
the whole paths.

To perform such analysis we can start with initially given state space graph
G0 = G(F(H),Min(F(H)) ∪ External(H)), check for parts of G0 that will
’behave’ differently if different additional restrictions are imposed on existing
constraints, and try to partition these parts in such a way that different behav-
iors are represented by different parts of these partitions. Let G1 be a graph
obtained by such a process from G0. By repeating this process we will obtain
(hopefully finite) sequence of graphs G0, G1, . . . , Gn, where Gn can not be fur-
ther partitioned. By analyzing attractor structure of Gn we can then expect to
find attractors for all different choices of constraints compatible with initial con-
straints Min(F(H)) ∪ External(H) and, moreover, hope, although that is not
guaranteed, that some attractors will be shared by several orderings of constants.



It turns out that the process of computing space graph sequenceG0, G1, . . . , Gn
essentially can be regarded as a process of constructing appropriate constrained
frame refinements (F0, CA0), · · · , (Fn, CAn), where (F0, CA0) =
(F(H),Min(F(H)) ∪ External(H)), (Fn, CAn) < · · · < (F0, CA0) and Gn =
G(Fn, CAn). An example in Figure 2 shows that such a refinement process in-
deed can reduce the number of states in the attractors of a state space graph. For
computing the sequence of graphs we propose the RefineStateSpace algorithm.
We use assignments init(α) and constr(α) to refer correspondingly to the initial
mode from which α has been derived and to the last transition constraint that
has triggered creation of α.

Algorithm RefineStateSpace
Input: State space graph G(F0, CA0)
Output: Refined state space graph G(F , CA)
1. F = 〈M,X,C ′, T,MF ′〉 ← F0, CA← CA0

2. for each α ∈M assign init(α)← α and constr(α)← O∅(C ′)
3. while there exist α, β ∈ M and different paths P1 = α, γ1, . . . , β, P2 =

α, γ2, . . . , β such that: O(P1) and O(P2) are incompatible and init(δ1) 6=
init(δ2) for all pairs of internal vertices δ1 ∈ P1 and δ2 ∈ P2 and there is
no alternative pair P ′

1 and P ′
2 of paths with O(P ′

1) or O(P ′
2) being a proper

subgraph of either O(P1) or O(P2)
4. do the following:
5. let τ1 = α → γ1 ∈ T and τ2 = α → γ2 ∈ T be transitions corre-

sponding to P1 and P2

6. M̂ ←M , T̂ ← T , ĈA← CA
7. remove α from M̂ and add to M̂ two new modes α1 and α2

8. assign init(α1)← init(α), init(α2)← init(α), constr(α1)← CA(τ1),
constr(α2)← CA(τ2)

9. remove transitions and constraint assignments involving α from T̂
and ĈA

10. for each τ = α → δ ∈ T , with τ 6= τ1, τ 6= τ2 add transition τ̂ =
α1 → δ to T̂ and assign ĈA(τ̂)← CA(τ)

11. for each τ = α → δ ∈ T , with τ 6= τ1, τ 6= τ2 add transition τ̂ =
α2 → δ to T̂ and assign ĈA(τ̂)← CA(τ)

12. add transition τ̂ = α1 → γ1 to T̂ and assign ĈA(τ̂)← CA(τ1)

13. add transition τ̂ = α2 → γ2 to T̂ and assign ĈA(τ̂)← CA(τ2)
14. for each τ = δ → α ∈ T if CA(τ) and CA(τ1) are consistent then add

transition τ̂ = δ → α1 to T̂ and assign ĈA(τ̂)← CA(τ) ∪ CA(τ1)
15. for each τ = δ → α ∈ T if CA(τ) and CA(τ2) are consistent then add

transition τ̂ = δ → α2 to T̂ and assign ĈA(τ̂)← CA(τ) ∪ CA(τ2)

16. M ← M̂ , T ← T̂ , CA← ĈA
17. return G(F , CA)

Algorithm RefineStateSpace is greedy and heuristic by its nature and its
output depends from the order in which pairs of paths P1 and P2 are selected in
Step 3. Nevertheless we can guarantee that the algorithm terminates and outputs
state space graph of constrained frame (F , CA) .



Let us denote by n(H) and m(H) correspondingly the number of modes and
the number of transitions in H. Let us denote by N(H) the number of different
complete (for each of the variables) orderings of transition constants of H that
are consistent with Min(F(H)) ∪ External(H).

Proposition 1. Algorithm RefineStateSpace terminates after a finite number
of steps and outputs a state space graph G with at most n(H)×N(H) vertices.

Proof. For each vertex of initial graph α ∈ V (G0) consider set Sα = {β ∈
V (G)|init(β) = α}. By the design of the algorithm for each pair of different
vertices β1, β2 ∈ Sα constraints constr(β1) and constr(β2) are incompatible.
Thus there are at most N(H) vertices in each such set Sα and therefore at most
n(H)×N(H) vertices in V (G).

The straightforward implementation of each while step of the algorithm has
O(N(H)(n(H) + m(H))) time, leading to comparatively high total time com-
plexity O((N(H)(n(H) +m(H)))2). However it is not difficult, although techni-
cally somewhat involved, to provide implementation with O(N(H)n(H)(n(H) +
m(H))) running time, which compares well with running of state space analysis
separately for each of N(H) complete orderings and analyzing the whole set of
N(H) graphs afterwards.

The way in which algorithm constructs (F , CA) from initial (F0, CA0) closely
resembles the way of defining a constrained frame refinement – essentially the
algorithm explicitly constructs the mode and transition mappingsm and t. More-
over, when mode α is split into modes α1 and α2 each path involving transition
α→ δ is preserved by replacing α either with α1 or α2. Thus, if all runs of frame
(F0, CA0) are infinite we have (F , CA) < (F0, CA0). For finite runs however
there is a possibility in each step to lose the first mode of the sequence. In most
cases this will not be a problem, since all SCCs, apart from the ones consisting
of a single mode, will be preserved, however the algorithm can be adjusted to
preserve such modes.

Proposition 2. If there are no finite runs of initial frame (F0, CA0) then for
G(F , CA) computed by algorithm RefineStateSpace the following holds:

1. For each complete (for each of the variables) ordering Ord of transition
constants and an attractor S in state space graph G(F0, CAOrd) there is an

attractor Ŝ in G(F , CA) with the same number of vertices and preserving
all paths in S.

2. For each attractor S in G(F , CA) there is a complete ordering Ord with state

space graph G(F0, CAOrd) containing attractor Ŝ with the same number of
vertices and preserving all paths in S.

Proof. 1. We have already shown that all infinite paths and thus the whole
attractor Ŝ will be preserved in G(F , CA). Let Ŝ be one of the attractors with

minimal number of modes such that subset A ⊆ Ŝ is mapped to S. If there exists
a non-mapped mode α ∈ Ŝ and α 6∈ A then due to minimality of Ŝ constraints
for all transitions to α must be compatible with Ord, thus we should have α ∈ A.



2. Consider an infinite path P in Ŝ and constraint O(P ). Then for every
complete ordering Ord compatible with the O(P ) there will be a corresponding

attractor S in G(F0, CAOrd) to which Ŝ can be mapped. Clearly all modes of S

should also have preimages in Ŝ.

Computational experiments

For the toy example in Figure 1 we have number of modes n(H) = 8 and number
of different orderings N(H) = 6. By performing analysis of space graphs for
all the 6 orderings we find 5 different attractors: A1 (8 states), A2 (4 states),
A3, A4 and A5 (each with 2 states). The state graphs for 6 possible orderings
correspondingly contain the following sets of attractors: {A1}, {A2}, {A2, A3}
(for two different orderings), {A4} and {A4, A5}.

When we use algorithm RefineStateSpace for analysis of this model, we find
the same sets of attractors. In principle number of states in refined graph depends
on the order in which the pairs of paths is chosen by the algorithm. However
for this example the algorithm consistently produced graphs with 40 states (this
can be shown to be the smallest possible) in which only attractor A3 was present
in 2 copies (a separate one for each of the orderings allowing A3).

The constrained HSM frame of our λ-phage model is derived from the earlier
model given in FSLM formalism. The model is described in [5] and [13] and
has been derived from semi-formal yet very well developed biological model of
λ-phage from [11].

The model includes 11 genes: N, cI, cII, cIII, cro, xis, int, O, P, Q and an
artificial gene Struc that stands for all genes producing structural proteins. The
activity of these genes is regulated by 10 binding sites, 4 of them each can bind
one and other 6 can bind two different proteins. The initial constrained HSM
frame (F(H) = 〈M,X,C ′, T,MF ′〉 ,Min(F(H)) ∪ External(H)) thus contains
36 × 24 = 11664 modes in M corresponding to all the possible combinations
of the binding site states. Each of these modes has between 10 and 16 outgoing
transitions in T – there is at least one transition for each binding site representing
the change of its state and two outgoing transitions for each site binding two
proteins, if this site is unoccupied in this particular mode. The set X contains 11
variables corresponding to the number of genes and there are 32 constants in C ′

for binding affinities (see [5, 13]). Mode-function assignments MF ′ are derived
from FSLM model by replacing concrete linear growth/degradation functions by
values from {↗,↘,→}.

Constraint assignments Min(F(H)) are defined by F(H) and there are 42
orderings of binding affinities that are consistent with known biological facts
that define External(H) (in the most compact form these biological constraints
are described in [6]). Finally, from the frame are removed transitions for which
constraints assigned by External(H) and Min(F(H)) are incompatible.

Additionally we can remove all modes that are not reachable under any of
42 allowed threshold orderings (e.g. if for some gene G there are two binding
sites: b1 with dissociation constant c1 and b2 with association constant c2, and
according to External(H) we should have c2 < c1, then state in which b1 is



occupied but b2 is free is not reachable). This reduces number of modes in F(H)
to 2890 (the removal of these modes does not change the attractors found by
algorithm RefineStateSpace).

Thus for our λ-phage model we have n(H) = 2890 and N(H) = 42. In
[6] we have already shown that for each Ord of 42 orderings consistent with
External(H) all the state spaces of G(F(H), CAOrd) contain only 2 attractors
that correspond to lysis (12 states) and lysogeny (2 states) behaviors of λ-phage
(for details about the structure of these attractors see [6]).

When instead of analyzing each consistent ordering Ord separately we ap-
plied algorithm RefineStateSpace to constrained frame (F(H),Min(F(H)) ∪
External(H) it produced graph with 19693 states. In this case n(H)×N(H) =
121380, so we needed to analyze around 6 times fewer states compared to indi-
vidual analysis of space state graphs for all 42 orderings. Also, the total number
of attractors was proportionally smaller – on average each of the attractors found
was shared by 7 different orderings.

Conclusions and discussion

Whilst it is known that in general cases the method we propose here may not
be able to produce non-trivial results (the whole state space can consist of just
a single attractor), we have shown that it can be useful for analysis of specific
models, including the relatively complex model of λ-phage. The results for the
few existing models are encouraging – all the attractors we have found by analysis
of qualitative information incorporated in frames describe behaviors that can
be achieved by underlying HSM with explicitly defined quantitative parameter
values. Moreover an interesting observation is that the same attractor structure
can be shared by many different orderings of transition constants, even when
the complete state space graphs for these orderings are different.

Regarding future work, firstly there is a range of questions concerning the
formalism that we have developed here and algorithms for state space analysis.
E.g. what can we say about general mathematical structure of frame refinements?
Can we design a good heuristic for RefineStateSpace algorithm that will minimize
the number of states in constructed frame refinement (or even, can we design an
efficient algorithm that always computes a refinement with the minimal number
of states)? Here we have not concentrated much on these questions, partially
because the underlying mathematical formalism might still be adjusted and it
is not clear as yet which parts of it will be really essential for analysis of HSM
representing real biological systems.

Secondly, there are questions how our approach can be extended to better
answer questions of biological nature. For instance, we have already indicated
the objective to include in models additional information about comparative
growth rates of growth/degradation functions (there are examples that show
that such inclusion may be useful). Another question of biological significance
is the identification and study of constraints that are crucial for directing the
system’s behavior towards a specific attractor – are such constraints consistent



over the whole state space, and can we link such constraints to known biological
events within models of real biological systems?
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